
OPTIMIZATION STRATEGIES FOR FFT USE
IN MUSICAL AUDIO ANALYSIS

by Ken Lindsay
for CS505 Spring 2006

Southern Oregon University
Ashland, Oregon USA

FFT Optimization

TABLE OF CONTENTS

Abstract � 1

Introduction � 1

Optimization Strategies� 5

Non Harmonic Fourier Series� 6

Function Space � 7

Reducing Computation in the Standard FFT Algorithm� 9

Conclusions� 10

Appendix 1: Explanation of Figures � 12

Fourier Series and FFT Results� 15

Appendix 2: Matlab Code� 20

Bibliography� 23

FFT Optimization
 i

O P T I M I Z A T I O N S T R A T E G I E S F O R F F T U S E I N
M U S I C A L A U D I O A N A L Y S I S

Abstract
In this paper we investigate the Fast Fourier Transform algorithm and consider some

optimizations intended to make the FFT more efficient for use in analyzing digital audio
signals. Two optimization strategies are considered: 1) use of alternative basis functions for
the Fourier series, and 2) identifying portions of the standard FFT computation mechanism
which may be unnecessary for adequate spectral analysis of the audio signal in question.

Introduction
We have used the FFT extensively in analyzing music for feature recognition. Our

primary purpose is the extraction of rhythm and melody features. We have concluded that
the basic nature of Fourier Analysis is sub-optimal for this work: information available at
high frequencies is excessive and over specifies this part of the spectrum, and not enough
frequency resolution is available at low frequencies to adequately serve our information
analysis needs. Partly, this problem can be considered as a computational efficiency issue and
partly it can be considered as a basic design flaw in standard Fourier analysis.

The human ear analyzes spectral information of a sound using a set of frequencies
that are nonlinearly spaced in the frequency spectrum. The FFT and Fourier analysis repre-
sent a sound by using a set of frequencies that are linearly spaced. Although the two forms
are mathematically equivalent, the difference between them may be quite substantial from a
practical point of view.

In standard Fourier analysis, a short segment of a time domain signal is converted to
the frequency domain, yielding the spectrum of the audio signal as a set of related sine and
cosine waves. The set of output frequency components (the sine and cosine basis functions)
are linearly spaced in the frequency domain. A typical example is

f(x) = a0 + a1*cos(x) + b1*sin(x) + a2*cos(2x) + b2*sin(2x) + a3*cos(3x) + b3*sin(3x) ... ,

where the a and b coefficients are usually real numbers but can also be complex numbers.
These coefficients are the amplitude of each component waveform. The integers inside the

FFT Optimization� 1

parentheses are the #equency of each particular component waveform. The a0 term repre-
sents any DC offset in the original signal. Adding together the set of simple waveforms re-
creates the original audio signal waveform to an arbitrary degree of accuracy, depending on
how many sines and cosines of different frequencies are used in the Fourier series. The re-
striction of frequencies to integers means that all component sines and cosines are harmoni-
ca%y related. Each component fits cleanly into the original short segment from the time do-
main, with no spillage outside the original bounds. Figure 1 illustrates a set of sine waves and
the composite waveform which is generated when the components are added together. The
individual waveforms are stacked for easy viewing, but this is a graphic convention and does
not represent any real feature of the waveforms per se. Figure 2 shows a close-up of the com-
posite which is scaled to reveal the shape of the waveform more clearly. Notice in particular
that the starting and ending points (y location, i.e. amplitude) of each waveform are equal, in
this case equal to zero since these are sine waves. Cosine waves start and end at y = 1.0 . The
amplitude of each waveform is normalized to [-1.0, 1.0]

Figure 1 Seven Fourier Sine Waveforms, and the Composite Wavefor&

FFT Optimization� 2

Figure 2 Close-up of Composite Waveform #om Figure 1

In nonharmonic Fourier series, the basis functions are allowed to have non integer
coefficients for determining the frequency of each sine or cosine wave. In this case the inte-
ger factors 2, 3, ... inside the sine and cosine functions are free to take on other real (or
complex) values rather than just integers. This has the potential to create algorithms which
have exponentially spaced frequencies in the output rather than linearly spaced frequencies,
mimicking the human ear. Figures 3 and 4 show an example of nonharmonic Fourier series
which is analogous to Figures 1 and 2. Note that the beginning y location of each waveform
is zero, since they are sine waves. The ending point of each waveform is not y = 0 since the
frequency (and wavelength) of the components is not restricted to integer relationship with
the length of the original time domain interval. The actual formula used to generate the fre-
quencies is

 fn = f0 + delta * (n - 1) pow . n = 1, 2, 3, pow = 1.1 . delta = fn / 10.0 .

The amplitude coefficients for nonharmonic Fourier series are analogous to standard Fourier
series, i.e. generally they are real numbers, but they can also be complex numbers.

FFT Optimization� 3

Figure 3 Nonharmonica%y Related Sine Waves and the Composite Wavefor&

Figure 4 Close-up of Composite Waveform #om Figure 3

FFT Optimization� 4

The specific frequencies generated for the two examples are:

harmonic series: fn = { 1, 2, 3, 4, 5, 6, 7 } .

nonharmonic series: fn = { 1.0, 1.167, 1.357, 1.558, 1.766, 1.979, 2.196 } .

Note that it would be difficult for the standard Fourier approach to generate the waveform
in Figure 4. It is possible, but would require many more than 7 basis waveforms, and since
the end point is not equal to zero, would require cosine waves as well as sine waves. The
composite waveform in Figure 2 could be generated by a nonharmonic Fourier series. Pick-
ing the frequency coefficients carefully would allow both end points to be matched more
easily than using standard Fourier series to match Figure 4. Probably it would need fewer
nonharmonic components (properly chosen) to generate Figure 2 than would be required of
harmonic components to generate Figure 4, but we have not done this analysis yet.

Optimization Strategies
In our analysis of the first optimization strategy, we consider nonharmonic Fourier se-

ries, which are close mathematical cousins to wavelets. When properly implemented, this
approach yields results which are as correct as the canonical Fourier series that uses harmoni-
cally related sine and cosine functions. By correct we mean that each of the two methods
provides an accurate transformation of audio signals from the time domain into the
frequency domain, within the confines of the mathematical assumptions of each method.

In the analysis of the second strategy, we explore the idea that some sections of the
information space may be over represented by the full set of Fourier sines and cosines. For
example, the FFT returns 75% of its frequency components (basis functions) in the higher
frequencies (5000 Hz to 20,000 Hz). However, most of the useful information in the audio
signal is contained in the frequencies below 5000 Hz, and indeed below about 2000 Hz.
The computation of some of the higher frequencies might be omitted in the algorithm,
while maintaining a sufficiently accurate spectral representation of the audio sample to be
useful for information analysis and pattern recognition. Omitting these computations may
reduce the “correctness” of the spectrum in the context of the Shannon-Nyquist sampling
theorem and other standard DSP measures. Since we are not intending to reconstruct the
signal, and are more concerned with accurate pattern recognition than with mathematical

FFT Optimization� 5

exactitude, we think it is acceptable to ignore some of the information available, and to con-
sider it redundant for our purposes so long as our pattern recognition needs are met.

The math behind Fourier analysis and the FFT explicitly assumes that the segment
of the audio signal being processed by the algorithm is infinitely repeated throughout all
time in an exact copy/paste style. This of course is never true in real life, and is one of sev-
eral sources of information distortion in standard DSP processing. The length of the FFT
window (number of audio samples) represents the “fundamental” frequency of the small sec-
tion of audio being processed, and the frequencies of all the sines and cosines in the Fourier
series for the audio waveform are integer multiples of this fundamental frequency. For ex-
ample, at the CD sampling rate of 44,100 samples per second, a 2048 point FFT gives a fun-
damental frequency of approximately 46 Hz: 2048/44,100 ~= 46.44 . Other frequencies out-
side the canonical set are not represented, except approximately. One interpretation of non
integer factors inside the sine and cosine functions of the Fourier series is that it is no
longer true that all the basis functions are harmonic multiples of the FFT window “funda-
mental”. Basis functions are merely the simple sine and cosine component waveforms
which, when added together, give the original audio waveform.

Non Harmonic Fourier Series
Fourier series analysis in computer music is a method of representing complicated

audio waveforms in terms of simpler waveforms, specifically sine and cosine functions. The
original audio waveforms are typically composed of data points represented as 16 bit num-
bers (or equivalent) that are equally spaced in time. These digitized samples are the meas-
ured voltage or power of the original analog audio waveform at each point in time. A time
series plot is simply the graph of the set of samples on the y axis, one for each location on
the x axis, which is the elapsed time in the musical waveform. Connecting the dots gives a
clear view of the shape of the audio waveform. Figures 1 through 4 are synthetic examples
which are also typical of the overall concept of time series plots. We next consider an inter-
pretation of these waveforms as points in an N-dimensional space, where N is the FFT size.

FFT Optimization� 6

Function Space
We assume the reader is familiar with the standard 3D representation of geometry in

terms of the x, y, and z axes, and representation of points in the familiar world in terms of (
x, y, z) components. The analysis of audio waveforms (and signals in general) can be
handled similarly to the usual representation of 3D geometry with its vertices, polygons and
locations in 3-space. Whereas a single point in 3-space needs 3 numbers, an x, y, and z value,
to specify its location, an audio waveform can be represented as a set of N elements n1, n2,
n3, ... nN that are the terms of the Fourier series used to approximate the shape of the wave-
form. If N is large enough, any waveform (with a few sensible restrictions) can be repre-
sented completely accurately by its Fourier series. It is a correct view to consider the Fourier
amplitude coefficients for the sine and cosine waves { a1, a2, a3, ... aN , b1, b2, b3 ... bN }
as (x, y, z, ...) coordinates of the waveform in an N-dimensional space where each
point in the space is a different waveform. Thus, if you have looked at FFT spectral plots
and understood them as a list of frequencies in the spectrum of the sound, you have been
doing analysis in a 1024 dimensional space (or however large your FFT window is). Although
the mathematical foundations of function spaces are deep and subtle (and for most people,
difficult), understanding them in more familiar terms of audio waveforms is relatively intui-
tive and simple.

A convenient detail of the standard 3D (x, y, z) coordinate system is that x, y, and z
are mutually perpendicular, and the basis vectors { x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1) }
are one unit long by the measure of 3D space. This convention simplifies the mathematical
processing of 3D data. Similarly, sines and cosines of a Fourier Series are orthonormal: mu-
tually perpendicular and one unit long (amplitude = one), by the measures of the N-
dimensional function space of the Fourier transform. A benefit of orthonormality is that
waveforms (function objects, or points in the Fourier transform function space) with similar
shapes also have similar sets of Fourier coefficients { a1, a2, a3, ... aN , b1, b2, b3 ... bN }
that describe their “location” in the function space. For pattern recognition purposes, this
simplifies the task of classifying the type of waveform that is being analyzed. Just as it can
determined by simple subtraction whether a set of points in 3D space are near the point (
x, y, z) = (10, 0, 0) (i.e., near the location on the x axis at x = 10), so can an audio

FFT Optimization� 7

waveform be classified as being “near” a point in N-dimensional Fourier series space by
comparing its coordinates (Fourier coefficients) to the known location. The known location
may be determined by a note event with a fairly unique set of Fourier coefficients, such as a
trumpet playing a B flat note above middle C, which would be a different location in the
function space than would be a piano playing the same pitch. The location of a waveform in
Fourier series space is largely determined by its timbre and fundamental frequency. The
loudness (amplitude) of the musical waveform would also play a role, but this can been seen
as analogous to changing the size of a 3D geometrical object without changing its shape.
Such differences can be ignored for some purposes, such as distinguishing the piano from
the trumpet. These differences would not be ignored for more sophisticated pattern recogni-
tion, such as determining the “mood” of a section of music by its loudness and whether it is
punchy and bright vs smooth and mellow.

(Young, 2001) presents an analysis of the mathematics behind these function space
ideas. The various theorems are concerned with mathematical properties such as conver-
gence of one form (e.g. Fourier series) to another (the original audio waveform) and other
details of the mathematical relationships amongst such objects. It is not at all clear from
Young’s treatment exactly how one might pursue the strategy to make an algorithm to do
this alternative nonharmonic FFT. He is mostly concerned with proof of the mathematical
correctness of the approach. This is, of course, proper behavior for a mathematician, but
can be frustrating for applied information scientists and engineers who want some practical
and easy to use technique to apply in their research or production work.

In the creation of the original Cooley-Tukey FFT algorithm, (Brigham, 1974) notes
that the mathematical approach behind the FFT was known and had been published in sev-
eral forms in the mathematical literature prior to the development of the Cooley-Tukey al-
gorithm. The main reason that Cooley-Tukey has become popular and well known is that
Richard L. Garwin, who was a high level researcher serving on the Presidenťs Scientific Ad-
visory Committee, pushed Cooley and Tukey to make a practical product rather than just
another research paper. (Press, 2002) notes that the math behind algorithm can actually be
traced back to 1805 and the work of the great mathematician Gauss. Whaťs needed to turn
nonharmonic Fourier analysis into a practical tool is a powerful manager to persuade these

FFT Optimization� 8

mathematicians into producing an algorithm analogous to the Cooley-Tukey (or Danielson-
Lanczos, or Runge-Konig, or Gauss) algorithm. There are numerous papers related to non-
harmonic Fourier series published in the areas of control systems and optimization. Perhaps
there is a jewel waiting to be discovered in the research literature, or developed from such
work.

Reducing Computation in the Standard FFT Algorithm
This section will look at tiling in the time/frequency space, and consider how the

higher frequency ranges in the FFT really represent small FFTs being repeated very often in
time. Each of these sub-FFTs looks at the high frequency content of the signal. Since the
spectrum of the signal changes slowly relatively to the high frequency sines and cosines of
the FFT, this could be optimized merely by omitting say 3 out of 4 (or 9 out of 10, or ...) of
these sub-FFTs, and assuming that the missing time/frequency tiles are equal to the ones
that are computed. Heuristic determination of the accuracy of the results can be verified as
needed by comparing the sub-FFTs and adapting the inner loop of the algorithm based on
the current spectrum of the signal. This could happen at numerous frequency ranges.

One potential downfall of this idea is that it may be true that the progressive stages
of the FFT algorithm keep the frequency information from one part of the spectrum inex-
tricably tangled with frequencies that are fairly distant in the spectrum from the frequencies
we want to ignore. Hence, in order to get the desired frequency information, it may be
mandatory to explicitly compute all frequency information. Investigating this concept is a
fairly large and technically challenging project that is beyond the current scope.

Another possibility is that there is redundancy shared between FFTs which are tiled
together to produce a Short Time Fourier Transform (STFT). The analysis of factoring of
the transform matrix could be done, and it might not be too difficult. More problematic is
that each STFT slice is first windowed by a gaussian function to reduce aliasing artifacts
which are introduced by the beginning and end of the time segment which is undergoing
Fourier transform. Figure 5 shows an example of an audio waveform of a small segment of
time, a gaussian window function of the same length, and the composite result which is then

FFT Optimization� 9

processed by the FFT algorithm. Note that the final waveform tapers off to zero at the be-
ginning and end of the interval, but still retains very similar shape to the original audio.

Figure 5 Audio Data, Window Function and Composite Result for FFT

Conclusions
We have considered alternatives to the standard FFT view of reality when working

with digital audio samples. We are most interested in musical audio analysis and pattern rec-
ognition. Unlike speech recognition which can have good results even when ignoring fre-
quencies above 2000 Hz, music analysis generally should not be limited in the frequency
domain due to the presence of important information in the higher frequencies. The ex-
panded frequency band for music inherently uses 4 to 10 times as many resources in terms
of computational cost as an adequate speech recognition system might require. Not all of
the high frequency information computed by the FFT algorithm or Fourier Analysis in gen-
eral is necessary for purposes of computational pattern recognition.

An ideal solution would be to design a method similar to Fourier analysis which uses
fewer frequency component basis functions (or “bins” as they are often called) in the higher

FFT Optimization� 10

frequency range of the spectrum, and more closely spaced basis functions in the lower
frequency range. It might be optimal to mimic the human ear and use basis functions which
are spaced exponentially, but there may be other methods of generating the deltas between
frequency bins that are equally good for the purpose of computer pattern recognition and
information extraction. It is quite likely that a matrix factoring scheme could be designed
which is analogous to the Cooley-Tukey/Danielson-Lanczos/Gauss approach.

The proper way to look at the sine and cosine basis functions of Fourier analysis is
that they are part of a more coherent framework, complex exponential functions, which are fac-
tored in the sub-matrices of the FFT into simpler, more efficient forms. The factoring of the
the complex exponentials is technically fairly advanced, but in essence is not much different
from factoring integers into their components: e.g. 4 = 2 x 2 , 12 = 3 x 2 x 2 and so on. (Young,
2001) shows that there are infinitely many ways to factor such a decomposition of function
space, and this is with the mathematical restriction of true convergence, correctness and so
on. It is likely that a nonharmonic factoring scheme could be designed which is useful for
musical audio analysis and also maintains mathematical correctness. It is virtually certain
that such a scheme (or infinitely many schemes) could be found by relaxing the mathemati-
cal strictures of the system, but maintaining sufficient accuracy for most practical purposes..

FFT Optimization� 11

Appendix 1: Explanation of Figures
The Matlab script kfd.m produces a set of related sine waves, plots the individual

waves together with the summed composite waveform in one graph, a specgram of the FFT
of the summed waveform in another graph, and a third graph of the composite waveform.
Two strategies are implemented for determining the frequency relationship amongst the
component sine waves. A linear set with constant delta frequency can be constructed, or a
set of waves which are related by a quadratic change in the delta frequency. Two methods of
specifying the linear set are available: 1) specify two frequencies, and a number of sine waves
for the algorithm to fit in the frequency band, and 2) specify a base frequency, a specific
delta frequency, and the number of sine waves. The quadratic method is specified by a base
frequency, the number of frequencies to generate, and a real number coefficient, pow, to use

for an exponent in the formula: fn = f0 + delta * (n - 1) pow n = 1, 2, 3, The script prints

a vector of the frequencies generated for each run of the algorithm.

There are several sources of resolution errors and distortion of the information as
generated and analyzed by this simple DSP method. A time vector t is created with 44,100
slots, and normalized to one second, yielding a time granularity of about 23 microseconds.
The fn value is used as a multiplier for the t vector, re-normalizing the t vector from a one
second period (1 Hz) to the period determined by fn . Except at low frequencies, this process
typically yields a waveform which is only marginally sinusoidal -- sharp corners in the wave-
forms are visible artifacts in the time series plots. This is a form of sampling error and is re-
lated to the granularity of time in the system. While the Shannon/Nyquist sampling theo-
rem “proves” that having 2 samples per cycle of the waveform for a particular frequency, we
find that this coarse sampling rate produces many artifacts. (Hamming, 1983) warns of this
type of error, and much of the engineering work in designing such a DSP system is spent on
identifying and reducing these artifacts. The fact that professional recording studios gener-
ally use 24 bit samples (rather than 16 bit as a CD uses), and sampling rates up to 192 KHz
(rather than 44.1 KHz CD rate, or 48 KHz DAT format sampling rate) clearly indicates that
real people can tell the difference. Shannon and Nyquist were primarily concerned with in-
telligibility for telephone speech, and minimizing costs in such a system. This is not appro-
priate for a high quality musical audio system.

FFT Optimization� 12

Figures A1, A2 and A3 show plots output by the kfd code. The first two are time se-
ries plots of generated Fourier frequency sets. The third shows the distribution of frequen-
cies for a quadratic Fourier set. The analogous plot for a linear frequency set would be a
straight line, and we omit that figure.

Figures A4, A5 and A6 show Fourier spectral plots of the same set of frequencies,
processed by using FFTs of different lengths. The actual frequencies (in Hz) are

{ 110, 117.3, 133.8, 157.5, 187.4, 223.1, 264.2, 310.4, 361.5, 417.3, 477.5, 542.2, 611.1, 684.1, 761.2, 842.2 }

The frequencies are linearly spaced, within the roundoff error. Note how longer FFTs give
better resolution of the spectral lines, and fewer artifacts. In an ideal world, the spectral plot
would show 16 perfectly sharp red lines, evenly spaced in a field of pure blue. In the real
world of DSP, we encounter spillage of energy from one part of the spectrum to other parts.
These are represented by the green/yellow “sky”, the yellow spaces between red spectral
lines, and the red line at the very bottom which represents extremely low frequencies not
present in the original signal. All of these are artifacts of sampling resolution and FFT win-
dow length. In a real audio signal we would also encounter artifacts related to the fact that
the segment being processed does not extend infinitely in both directions for all time, as
Fourier Analysis and the FFT explicitly assume.

Figures A7 through A12 show specgrams for 50 linearly spaced frequencies between
100 Hz and 2500 Hz. The effect of better resolution with longer FFTs is again clearly visi-
ble. Additionally Figures A7 and A8 show examples of severe distortion due to interaction
between FFT window size and the sampled waveform data. We have not analyzed this effect
thoroughly at this time. There are also FFT artifacts visible in Figures A8 through A12, al-
though they are far less severe

Figures A13 through A20 show a similar set of specgrams for a quadratically spaced
frequency set. The exponent for the frequency difference formula is 1.5 for this set. The FFT
artifacts in the 1Ks and 2Ks specgrams are severe, but quite different from the artifacts in
the linearly spaced frequency set. As the FFT length increases, notice how the lower fre-
quencies are progressively better separated. Notice also that the frequency lines are not uni-
form: some them are sharper and better defined than others with distinct red centers and

FFT Optimization� 13

less of the yellow “fringe” above and below. We have not analyzed this effect yet either, but
believe that it is caused by interaction between the frequency of the component waveform
and the length of the FFT window.

FFT Optimization� 14

Figure A4 4096 Point FFT Spectru&

Figure A5 8192 Point FFT Spectru&

Figure A6 12288 Point FFT Spectru&

Fourier Series and FFT Results

Figure A1. Fourier Series Composite Wavefor&

)ith Low Frequency Amplitude Artifacts

Figure A2. Close-up of Composite Wavefor&

)ith Low Frequency Waveform Artifacts

Figure A3. Frequency Distribution Curv*

Quadratic: delta * (n -1)^2.5

FFT Optimization� 15

Figure A10 4096 Point FFT Spectru&

Figure A11 5120 Point FFT Spectru&

Figure A12 8192 Point FFT Spectru&

Figure A7 1024 Point FFT Spectru&

Figure A8 2048 Point FFT Spectru&

Figure A9 3072 Point FFT Spectru&

FFT Optimization� 16

Figure A15 3072 Point FFT Spectru&

Figure A16 4096 Point FFT Spectru&

Figure A13 1024 Point FFT Spectru&

Figure A14 2048 Point FFT Spectru&

FFT Optimization� 17

Figure A19 12288 Point FFT Spectru&

Figure A20 16384 Point FFT Spectru&

FigureA17 5120 Point FFT Spectru&

Figure A18 8192 Point FFT Spectru&

FFT Optimization� 18

Figure A21 Composite waveform Showing Low Frequency Artifacts

This waveform is the composite of 40 frequencies spaced equally between 500 Hz
and 900 Hz. The 0.1 second spikes (10 Hz) are clear examples of low frequency artifacts.
Additionally, there is a kind of ripple in the low amplitude sections between the spikes. This
ripple has a frequency about 8 times the frequency of the spikes, making it an 80 Hz (ap-
proximately) artifact. We have not analyzed this in detail but it is probably caused by sam-
pling granularity in the component waveforms. Figure A22 shows a close-up of the ripple.

Figure A22 Close-up of Figure A21 Showing Source of Ripple in the Wavefor&

FFT Optimization� 19

Appendix 2: Matlab Code
Sample code use:

kfd(110, 1.7, 15, 1, 'Q1', 4096) % quadratic spacing of frequencies in freq set
 15 frequencies, start at 110 Hz.
 first frequency delta = (110 / 10) ^ 55
 subsequent delta for frequency n ~ 55 ^ ((n - 1) * 1.7)
 1 sec sample,
 4 Ksample FFT window

% linear spacing of frequencies in frequency set (style 1)
kfd(441, 19, 15, 1, 'L1', 12288)
 15 frequencies, start at 441 Hz.
 constant frequency delta = 19 Hz)
 1 sec sample,
 12 Ksample FFT window

% linear spacing of frequencies in frequency set (style 2)
kfd(1000, 5000, 25, 1, 'L2', 1024)
 25 frequencies, start at 1000 Hz.
 make evenly spaced frequency up to max frequency = 5000 Hz
 1 sec sample,
 1 Ksample FFT window

Matlab script kfd.m :

function [fs] = kfd(f0, fN, fcount, samplen, fstyle, FFTlen, sweep, sweepstyle)
% demo of some deficiencies in the Cooley-Tukey FFT, and Fourier Analysis
% 1. frequency resolution vs frequency
%
% f0 = start frequency
% fN = end freq, or coeff for Q1, E1 etc
% fcount = % count of frequencies to generate
% samplen = length of generated audio data in seconds
% use this to trigger changing freqquencies. every 1.0 sec, fund freq changes
% fstyle = freq change strategy:
% L1 = linear -- mult f(n) by a constant: eg f(n+1) = f(n)(1 + delta)
% L2 = linear -- add a constant to f(n): eg f(n+1) = f(n) + ndx*delta
% E1 = exponential going up -- delta f increases exponentially
% Q1 = quadratic fn x^pow, delta f increases quadratically
% future features:
% sweep = generate smoothly changing freqquencies also
% sweepstyle = strategy for how sweep change is generated
%
% fs output == composite waveform of all the generated sinusoids

argc = nargin;
samp_rate = 44100 % CD audio sampling rate per second

% default run params

FFT Optimization� 20

f_start = 5000 % fundamental. resolution depends on this one. use Nyquist/Shannon
f_end = 9000
f_count = 20 % generate 20 distinct waveforms
% percent change between freqquencies = (f_end - f_start)/ f_count
samp_len = 1.0 % 1 sec of data == 44100 data points
f_style = 'L1'
fft_len = 256
f_sweep = 0
f_sweepstyle = 0
cycle_factor = 2 * pi % full sine wave at samp_rate (s/b Nyq_freq?, ie 2*pi?)

if argc > 0
 f_start = f0
end
if argc > 1
 f_end = fN
end
if argc > 2
 f_count = fcount
end
if argc > 3
 samp_len = samplen % sample length in seconds
end
if argc > 4
 f_style = fstyle
end
if argc > 5
 fft_len = FFTlen
end
if argc > 6
 f_sweep = sweep
end
if argc > 7
 f_sweepstyle = sweepstyle
end

% generate x grid points, 2 Nyq cycles/sec
x_FS = linspace(0.0, cycle_factor, samp_rate * samp_len)';
FS = zeros(samp_rate * samp_len, f_count + 2); % one row per WF, plus sum total slot
f_list = zeros(f_count + 1, 1);
switch f_style
 case { 'L1' }
 f_coeff = f_end % use fN as delta f
 x_pow = 1
 case { 'L2' }
 f_coeff = (f_end - f_start)/ (f_count) % N evenly spaced f's between f0 & fN
 x_pow = 1
 case { 'E1' }
 f_coeff = f_end % use fN as delta f
 x_pow = 1
 case { 'Q1' }
 f_coeff = f_start/f_count % "evenly" spaced f's (quadratically)
 x_pow = f_end
end

FFT Optimization� 21

% freq set construction loop
for runndx = 1:1:f_count + 1 % gives one extra freq than input #
 current_f = f_coeff * (runndx - 1)^x_pow;
 f_list(runndx) = f_start + current_f;
 FS(:, runndx) = FS(:, runndx) + sin((f_start + current_f) * x_FS);
 FS(:, f_count + 2) = FS(:, f_count + 2) + FS(:, runndx); % sum of all harmonics
 FS(:, runndx) = FS(:, runndx) + 2 * (runndx - 1); % for stacking plot
end % freq set construction loop

% norm summed WF to +/- 1
max_amp = max(abs(FS(:, f_count + 2)));
FS(:, f_count + 2) = 2 * (f_count + 2) + FS(:, f_count + 2) / max_amp;

frequencies = f_list % list them here, also below
colors = ['b', 'k', 'r', 'g', 'm']
figure
hold on
% plot the time series waveform. norm to seconds, not samples
plot(x_FS/cycle_factor, FS)
title('FS time series')

% plot a stack of WFs in different colors
%figure
%hold on
%for runndx = 1:1:f_count + 2 % include all component WFs and composite WF
% % plot the time series waveforms. norm to seconds, not samples
% plot(x_FS/4*pi, FS(:,runndx)) % plot each time series waveform
%end

figure
hold on
% plot the composite time series waveform. norm to seconds, not samples
% norm composite WF to +/- 1
plot(x_FS/cycle_factor, FS(:, f_count + 2) - 2 * (f_count + 2), 'LineWidth', 2)
title('FS composite')

 figure
% plot the spectrum vs time (artifacts!)
 specgram(FS(:, f_count + 2), fft_len, samp_rate);

 figure
 plot(f_list)
 title('frequency list')
frequencies = f_list % last visible text output data from script run

% fs = FS; % return the WF array

end % function nademo(x0, xn, delta, y0, tol)

FFT Optimization� 22

Bibliography

Brigham, O. (1974). The Fast Fourier Transform. Englewood Cliffs, NJ. Prentice-Hall.

Elliott, Douglas F. & Rao, K. Ramamohan. Fast Transforms: Algorithms, Analyses, Ap-
plications. Academic Press. Orlando, San Diego, San Francisco. 1982.

Hamming, R. W. (1983). Numerical Methods for Scientists and Engineers, 2nd ed. McGraw-
Hill Book Company, New York.

Press, William H., Teukolsky, Saul A., Vetterling, William T., & Flannery, Brian P. (2002)
Numerical Recipes in c++: The Art of Scientific Computing, 2nd edition. Cambridge
University Press. Cambridge, UK.

Young, Robert M. An Introduction to Nonharmonic Fourier Series, revised 1st ed.
Academic Press. San Diego, San Francisco. 2001.

FFT Optimization� 23

